23 research outputs found

    Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory

    Get PDF
    Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies

    Electrons imitating light: Frustrated supercritical collapse in charged arrays on graphene

    Get PDF
    The photon-like electronic dispersion of graphene bestows its charge carriers with unusual confinement properties that depend strongly on the geometry and strength of the surrounding potential. Here we report bottom-up synthesis of atomically-precise one-dimensional (1D) arrays of point charges aimed at exploring supercritical confinement of carriers in graphene for new geometries. The arrays were synthesized by arranging F4TCNQ molecules into a 1D lattice on back-gated graphene devices, allowing precise tuning of both the molecular charge state and the array periodicity. Dilute arrays of ionized F4TCNQ molecules are seen to behave like isolated subcritical charges but dense arrays show emergent supercriticality. In contrast to compact supercritical clusters, extended 1D charge arrays exhibit both supercritical and subcritical characteristics and belong to a new physical regime termed frustrated supercritical collapse. Here carriers in the far-field are attracted by a supercritical charge distribution, but have their fall to the center frustrated by subcritical potentials in the near-field, similar to the trapping of light by a dense cluster of stars in general relativity

    Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures

    Get PDF
    Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures, and helps to clarify how their electronic properties might be tuned in future 2D nanodevices

    Imaging Individual Chemical Bonds and Tuning Single-Molecule Charge States at Surfaces

    No full text
    In an effort to make advances in electronics through ever smaller devices, the field of molecular electronics has emerged as a natural step in achieving ultimate miniaturization of devices down to the size of single molecules. Progress in molecular electronics is intimately linked to understanding these devices at the atomic and molecular length scales at which they operate. As a move in this direction we have performed local probe studies in which we have nondestructively imaged the products of chemical reactions within molecular electronics elements. We have also imaged and tuned the orbitals and charge states of individual molecular electronics elements on surfaces. This dissertation, after introducing the field of nanoelectronics and the local probe techniques used in the study, reports on imaging of chemical structures of on-surface synthesized molecules and conductive polymers with individual-chemical-bond resolution and their relationship to the electronic structure. Depending on the specific molecules and surfaces used, the on-surface synthesized molecular structures formed single molecule products (monomers), chemically reacted intermediates, or conductive polymers exhibiting extended electronic structure along their backbone. This dissertation additionally demonstrates orbital gating of molecules on a back-gated graphene device. The energy alignment of molecular orbitals on graphene was tuned using an electrostatic back-gate, which resulted in molecules switching between neutral and negatively charged states. This control of charge states of single molecules on surfaces and identification of on-surface synthesized reaction products with sub-molecular resolution contributes to our understanding of molecular electronics elements at their natural length scales

    Noncovalent Dimerization after Enediyne Cyclization on Au(111)

    No full text
    We investigate the thermally induced cyclization of 1,2-bis­(2-phenylethynyl)­benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C<sup>1</sup>–C<sup>6</sup> (Bergman) or a C<sup>1</sup>–C<sup>5</sup> cyclization pathway. On Au(111), we find that the C<sup>1</sup>–C<sup>5</sup> cyclization is suppressed and that the C<sup>1</sup>–C<sup>6</sup> cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C<sup>1</sup>–C<sup>6</sup> product self-assembles into discrete noncovalently bound dimers on the surface. The reaction mechanism and driving forces behind noncovalent association are discussed in light of density functional theory calculations
    corecore